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Fig. 2 Effect of discretization method on skin-friction distribution
for separated flat flow. Uniform 61 X 31 grid and R = 1024.
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Transonic Flows with Vorticity
Transport Around Slender Bodies

efficiency gives similar results as for the external flow prob-
lem. The combination of line relaxation of the coupled equa-
tions and direct solution of the stream-function equation
(Method III) turns out to be about two times faster than the
Newton's method with direct solution of both stream-function
and vorticity equations (Method IV) and approximately six
times faster than line relaxation of the coupled equations only
(Method I). Again, the different schemes generate virtually
identical solutions.

Conclusions
Using Newton's linearization and Gaussian elimination with

partial pivoting to solve the finite-difference equations of the
coupled system for \l/ and w simultaneously results in a very
robust algorithm, but it requires large storage. However, for
two-dimensional problems, this storage requirement is afford-
able even on a VAX computer. This fully implicit calculation
converges quadratically, provided a meaningful initial guess is
used. The algorithm is particularly attractive if unstructured
grids (finite volumes or finite elements) are used. (For unstruc-
tured grids the full Navier-Stokes equations are needed.) Ap-
plications of Newton's method and direct solver to three-di-
mensional problems in general are not possible on the present
computers.

The combination of a direct solver for the stream-function
equation and line-relaxation method for the coupled stream-
function and vorticity equations results in the fastest scheme.
This hybrid method requires less memory than the solution
technique based on Newton's method and direct solution of \l/
and a? simultaneously. The LU decomposition of the linear
stream-function discrete equations is performed once. There-
fore, the subsequent calculations are very inexpensive. Exten-
sion of this hybrid scheme for solving three-dimensional flow
problems is promising.
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I. Introduction

I N the last decade, methods of modeling vortical incom-
pressible flows around slender bodies have been developed.

A review of these methods is given in Ref. 1. The basic premise
of these methods is that discrete vortices are introduced into an
otherwise potential flow. If the discrete vortices are excluded
from the domain, then the flow velocities in the domain can be
considered as the superposition of potential flow velocities and
the velocities induced by the vortices. The formulation re-
quires that the governing equations be linear (to allow super-
position) and, hence, excludes nonlinear compressible flows
such as transonic flow. Also the vortex elements must be
tracked, and this can become a complicated computational
procedure.

This Note is concerned with the derivation of a technique for
compressible flows that is similar to that for incompressible
flows. The vorticity transport equations are derived from
Crocco's equation, and for slender bodies it is found that the
flow is isentropic to a first approximation and that only the
crossflow vorticity is significant. The latter result is similar to
one used in the incompressible theory. The present theory does
not require discrete vortices but computes a vorticity field,
thus avoiding the need for tracking the vortex elements. In the
incompressible limit the "standard" formulation is recovered,
and hence the present theory can be regarded as a unifying
theory for all speed ranges.

Analysis
The Euler equations for steady compressible flow are

(pU2+p)x + (PUV)y

(pUV}x + (pV2 + p)y

(PUW}Z = 0

(pVW)z = 0

(1)
(2)

(3)
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(PUW)X + (pVW)y = 0

[PU(h
\pW(h

(PV(h
2)}z = 0

i = U2 + V2 + W2

(4)

(5)

(6)

where p is the density, U, V, and W are velocity components
in the Cartesian coordinate system (x,y,z), h is the specific
enthalpy, and p is the pressure.

Manipulation of the Euler equations and the use of Gibbs
relation leads to Crocco's equation

= T VS (7)

where S is entropy, T the temperature, and q the velocity
vector given by

= iU

V = /—— + J-T- +3x dy

The vorticity vector Q is defined by

—dz

Equation (7) can be differentiated to give

or, using Eq. (7),

"v7 X (q X 0) = ~VT x(qx Q)/T

In component form Eq. (12) can be written as

= ^Uy + G3£/z

(8)

(9)

(10)

(U)

(12)

(13)

(14)

(15)

where

Assume that the vorticity is produced on a slender body
where the thickness to length ratio is characterized by the small
parameter e. Thus, the dimensions of the body in the y and z
directions are of order e. In order to make the dimensions of
the body equal, the following tranformation is used:

(16)

In addition, it is assumed that the velocity components U V,
IV can be expanded in the usual slender-body expansion to give

(17)

The temperature T is also expanded as a series; thus

T = 7^(1 + eTO (18)

where m > 1. Using Eqs. (16-18), it can be shown that a first
approximation to Eqs. (13-15) is

-1 (19)

(20)

(21)

If at some boundary the vorticity that is initiated has a
vector in the x direction, then Eqs. (19-21) show that to a first
approximation 02 and Q3 are negligible in comparison with Q l f
which is then given by

Thus, in the slender-body approximation one component, the
crossflow vorticity, is dominant to a first approximation, and
this vorticity is transported throughout the fluid without the
interchanging with the other components. The neglected terms
are of the order eQ\. In order to solve Eq. (2), it is necessary to
specify the boundary conditions. These boundary conditions
are the location of the separation line and the magnitude of the
shed vorticity. These must be found from empirical relations
such as those used by Mendenhall and Per kins1.

Assume that the velocity field is composed of an irrotational
part, denoted by the subscript /, and a rotational part, denoted
by the subscript r. Assume also that only the Q! component of
vorticity is significant, i.e., terms of order eOi are negligible.
The vorticity equations then become (dropping the superscript
tilde in the following for convenience)

Viz-Wiy= 0, Vrz - Wry = Q, (23a)

In Eqs. (23b) and (23c) the equations for the rotational
components simply duplicate the irrotational component, and
it suggests that a velocity potential <£ exists such that

K, = (24)

and that

thus to first-order

U, = 0

A vector potential A is defined as

~qr = V x ~A

where

Substituting Eqs. (27) and (28) into Eq. (23) gives

A _i_ A — _ Olyy ^izz ~~ **i

(25)

(26)

(27)

(28)

(29)

(30)
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Since

the subscript "1" will be omitted in the following discussion.
The equations governing the transport of vorticity are Eq.

(22) and the following equations:

Ayy +AZZ = Q! (31)

(32)

where <£ is the velocity potential.
In the present formulation, the rotational velocity compo-

nents Vr and Wr can be regarded as quasi-two-dimensional
since Eq. (31) involves only.y and z derivatives. However, there
is an x variation because fii varies with x because of Eq. (22).

The standard transonic potential wing theory can be de-
duced from Eqs. (1) and (5) with the irrotational assumption
and the isentropic relation.

Equation (5) can be written, using Eqs. (1) and (32), as

= 1 + (y _ 1) M^ (1 _ £/2 _ y2 _ W2^ (34)

Using Eq. (32), Eq. (34) becomes

\i-1 Ml
2

-(^-^)2 (35)

Equation (35) is an equation for p in terms of </>, A . The set of
equations, Eq. (1), the irrotational equations, and Eq. (35)
with

Az = Ay = 0

are the equations solved by the traditional potential method.
In order to solve for a flow with vorticity, two additional
equations, namely Eq. (22) and (31), must be solved. Equation
(22) gives the vorticity transport and Eq. (31) the rotational
velocity induced by the vorticity.

If a slender-body approximation is made to Eqs. (1) and
(35), the x derivative will vanish, giving only a crossflow; this
would be consistent with the use of Eq. (22). However, it is
usually essential to retain the x derivatives in a transonic calcu-
lation in order to resolve shock waves, and the only consistent
conditions under which the slender-body approximations to
the vorticity transport and Eqs. (1) and (35) can be combined
are if the terms retained in the derivation of Eq. (22) are also
retained in Eq. (35). If the streamwise component of vorticity
Qj is the same order of magnitude as (pU)x, then to a first
approximation Eq. (22) is consistent with the use of Eqs. (1)
and (35). Thus, if

O O | (pU)x (36)

then the transonic flow over a slender body with first-order
vorticity effects is given by Eq. (1), (22), (31), and (35) together
with the irrotational relations.

Relationship to the Incompressible Discrete Vortex Model
Over the last decade, models of separated flow using discrete

vortices have been developed for incompressible flow, and it is

instructive to compare the present formulation with this dis-
crete vortex model.

For incompressible flow the governing equations, Eqs. (1),
(31), and (22), reduce to

V2</> = 0

Ayy + Azz = —— 0

ao ao ao ^— + v— + w — =0a* dy dz

(37)

(38)

(39)

Since the streamwise velocity U is replaced by its freestream
value, Eq. (39) denotes the transport of 0 along particle paths.
That is, a discrete vortex element introduced at some point in
space is unchanged in strength as it is transported throughout
the flowfield.

If, at a streamwise point x, the vortex element is located at
(y,z), then at x + Ax the element is at

0 + Ay,z + Az)

Now, in the present formulation

Av Av At VA.y = — Ax = —— Ax =-Ax = evAx (40)* Ax At Ax U v '

Az = — Ax = — —— Ax = — Ax = ewAx (41)Ax At Ax U

where U, V, W are the velocity components of the fluid parti-
cle containing the vortex element. Thus, Eqs. (40) and (41) give
the location of the vortex element at the streamwise station
x + AJC.

The velocity induced by the vortex elements is found from
Eqs. (38) and (39). Equation (38) can be written in integral
form using Green's theorem and gives

Vr = Az = \c(KzAn -KnzA) dC + \D[KZQ dr, df (42)

Wr = - Ay = - \c(KyAn -KnyA) dC - MKyQ dr? df (43)

where

:4^
(44)

and D is the two-dimensional crossflow domain excluding the
body boundary C. The coordinate direction n is the inward-
drawn normal to C.

The first integral on the right-hand side of Eqs. (42) and (43)
is a boundary term and is evaluated by requiring that there be
no flow through the body. The double integral denotes the
velocity components induced by an infinite number of vortices
of strength Qdrjdf. If the integral Eq. (42) is discretized to give

- lim Kz (45)
"-* oo / = i

where -y/ is the strength (fi/ Arj Af) of the vortex at location / (TJ/,
f/), then it may be seen that this integral is equivalent to the
result obtained using the Biot-Savart law for the induced veloc-
ity in the y coordinate due to a collection of TV discrete vortices.
A similar result applies to Eq. (43).

In summary, the incompressible limit of the present theory
gives the velocity and, consequently, the pressure on a body by
the superposition of the velocity found from a solution of
Laplace's equation and the crossflow velocity induced by a
finite number of discrete vortices. The vorticity is constant for
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a particular fluid element and is transported with the fluid.
This model of rotational flow is identical to that used by
Mendenhall and Per kins1 and others for incompressible flow.
The present theory, therefore, gives a framework for incorpo-
rating vorticity into the classic potential equation for incom-
pressible and compressible flow.

Concluding Remarks
A formulation for vorticity effects has been derived for

slender bodies and incorporated into a compressible flow
model. The formulation reduces to the standard equations for

incompressible flow and, hence, provides a unifying frame-
work for all speed ranges.
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